Chào mừng quý vị đến với website của ...
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tài liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.
day truy hoi voi may tinh casio

Nguồn: aetaGG
Người gửi: Nguyễn Xuân Tưởng
Ngày gửi: 11h:41' 29-05-2012
Dung lượng: 74.2 KB
Số lượt tải: 30
Mô tả:
D·y truy håi víi m¸y tÝnh casio fx - 570MS.
***************
A. §Æt vÊn ®Ò:
M¸y tÝnh ®iÖn tö Casio fx - 570 MS cã nhiÒu ®Æc ®iÓm u viÖt h¬n c¸c MTBT kh¸c. Sö dông MT§T Casio fx - 570 MS lËp tr×nh tÝnh c¸c sè h¹ng cña mét d·y sè lµ mét vÝ dô. NÕu biÕt c¸ch sö dông ®óng, hîp lý mét quy tr×nh bÊm phÝm sÏ cho kÕt qu¶ nhanh, chÝnh x¸c. Ngoµi viÖc MTBT gióp cho viÖc gi¶m ®¸ng kÓ thêi gian tÝnh to¸n trong mét giê häc mµ tõ kÕt qu¶ tÝnh to¸n ®ã ta cã thÓ dù ®o¸n, íc ®o¸n vÒ c¸c tÝnh chÊt cña d·y sè (tÝnh ®¬n ®iÖu, bÞ chÆn...), dù ®o¸n c«ng thøc sè h¹ng tæng qu¸t cña d·y sè, tÝnh héi tô, giíi h¹n cña d·y...tõ ®ã gióp cho viÖc ph¸t hiÖn, t×m kiÕm c¸ch gi¶i bµi to¸n mét c¸ch s¸ng t¹o. ViÖc biÕt c¸ch lËp ra quy tr×nh ®Ó tÝnh c¸c sè h¹ng cña d·y sè cßn h×nh thµnh cho häc sinh nh÷ng kü n¨ng, t duy thuËt to¸n rÊt gÇn víi lËp tr×nh trong tin häc.
Sau ®©y lµ mét sè quy tr×nh tÝnh sè h¹ng cña mét sè d¹ng d·y sè thêng gÆp trong ch¬ng tr×nh, trong ngo¹i kho¸ vµ thi gi¶i To¸n b»ng MTBT:
B. néi dung:
I/ LËp quy tr×nh tÝnh sè h¹ng cña d·y sè:
1) D·y sè cho bëi c«ng thøc sè h¹ng tæng qu¸t:
|
Trong ®ã f(n) lµ biÓu thøc
cña n cho tríc.
(UnchØ phô thuéc vµo n)
C¸ch lËp quy tr×nh:
- Ghi gi¸ trÞ n = 1 vµo « nhí : 1
- LËp c«ng thøc tÝnh f(A) vµ g¸n gi¸ trÞ « nhí 1
- LÆp dÊu b»ng: (U1)(U2) ...
Gi¶i thÝch:
1 : ghi gi¸ trÞ n = 1 vµo « nhí
1 : tÝnh un = f(n) t¹i gi¸ trÞ (khi bÊm dÊu b»ng thø lÇn nhÊt) vµ thùc hiÖn g¸n gi¸ trÞ « nhí thªm 1 ®¬n vÞ:1 (khi bÊm dÊu b»ng lÇn thø hai).
* C«ng thøc ®îc lÆp l¹i mçi khi Ên dÊu
VÝ dô 1: TÝnh 10 sè h¹ng ®Çu cña d·y sè (un) cho bëi:
Gi¶i:
- Ta lËp quy tr×nh tÝnh un nh sau:
1
1 5 1 5 2 1 5 2
1
- LÆp l¹i phÝm: ... ...
Ta ®îc kÕt qu¶: u1 = 1, u2 = 1, u3 = 2, u4 = 3, u5 = 5, u6 = 8, u7 = 13,
u8 = 21, u9 = 34, u10 = 55.
2) D·y sè cho bëi hÖ thøc truy håi d¹ng:
|
|
Trong ®ã f(un) lµ biÓu thøc cña
un cho tríc.
( Un+ 1 chØ phô thuéc vµo Un)
C¸ch lËp quy tr×nh:
- NhËp gi¸ trÞ cña sè h¹ng u1: a
- NhËp biÓu thøc cña un+1 = f(un) : ( trong biÓu thøc cña un+1 chç nµo cã un ta nhËp b»ng )
- LÆp dÊu b»ng:
Gi¶i thÝch:
- Khi bÊm: a mµn h×nh hiÖn u1 = a vµ lu kÕt qu¶ nµy
- Khi nhËp biÓu thøc f(un) bëi phÝm , bÊm dÊu lÇn thø nhÊt m¸y sÏ thùc hiÖn tÝnh u2 = f(u1) vµ l¹i lu kÕt qu¶ nµy.
- TiÕp tôc bÊm dÊu ta lÇn lît ®îc c¸c sè h¹ng cña d·y sè u3, u4...
VÝ dô 2: T×m 20 sè h¹ng ®Çu cña d·y sè (un) cho bëi:
Gi¶i:
- LËp quy tr×nh bÊm phÝm tÝnh c¸c sè h¹ng cña d·y sè nh sau:
1 (u1)
2 1 (u2)
...
- Ta ®îc c¸c gi¸ trÞ gÇn ®óng víi 9 ch÷ sè thËp ph©n sau dÊu ph¶y:
u1 = 1 u8 = 1,414215686
u2 = 1,5 u9 = 1,414213198
u3 = 1,4 u10 = 1,414213625
u4 = 1,416666667 u11 = 1,414213552
u5 = 1,413793103 u12 = 1,414213564
u6 = 1,414285714 u13 = 1,414213562
u7 = 1,414201183 u14 =...= u20 = 1,414213562
VÝ dô 3: Cho d·y sè ®îc x¸c ®Þnh bëi:
T×m sè tù nhiªn n nhá nhÊt ®Ó un lµ sè nguyªn.
Gi¶i:
- LËp quy tr×nh bÊm phÝm tÝnh c¸c sè h¹ng cña d·y sè nh sau:
3 (u1)
3 (u2)
(u4 = 3)
VËy n = 4 lµ sè tù nhiªn nhá nhÊt ®Ó u4 = 3 lµ sè nguyªn.
3) D·y sè cho bëi hÖ thøc truy håi d¹ng:
|
|
C¸ch lËp quy tr×nh:
* C¸ch 1:
BÊm phÝm: b A B a C
Vµ lÆp l¹i d·y phÝm:
A B C
A B C
Gi¶i thÝch: Sau khi thùc hiÖn
b A B a C
trong « nhí lµ u2 = b, m¸y tÝnh tæng u3 := Ab + Ba + C = Au2 + Bu1 + C vµ ®Èy vµo trong « nhí , trªn mµn h×nh lµ: u3 : = Au2 + Bu1 + C
Sau khi thùc hiÖn: A B C m¸y tÝnh tæng u4 := Au3 + Bu2 + C vµ ®a vµo « nhí . Nh vËy khi ®ã ta cã u4 trªn mµn h×nh vµ trong « nhí (trong « nhí vÉn lµ u3).
Sau khi thùc hiÖn: A B C m¸y tÝnh tæng u5 := Au4 + Bu3 + C vµ ®a vµo « nhí . Nh vËy khi ®ã ta cã u5 trªn mµn h×nh vµ trong « nhí (trong « nhí vÉn lµ u4).
TiÕp tôc vßng lÆp ta ®îc d·y sè un+2 = Aun+1 + Bun + C
*NhËn xÐt: Trong c¸ch lËp quy tr×nh trªn, ta cã thÓ sö dông chøc n¨ng ®Ó lËp l¹i d·y lÆp bëi quy tr×nh sau (gi¶m ®îc 10 lÇn bÊm phÝm mçi khi t×m mét sè h¹ng cña d·y sè), thùc hiÖn quy tr×nh sau:
BÊm phÝm: b A B a C
A B C
A B C
LÆp dÊu b»ng: ... ...
* C¸ch 2: Sö dông c¸ch lËp c«ng thøc (Sö dông nhiÒu)
BÊm phÝm: a (G¸n Un vµo « nhí A)
b (G¸n Un + 1 vµo « nhí B)
A B C (Ghi c«ng
thøc vµo MH)
(chuyÓn Un + 1 sang Un)
(chuyÓn Un + 2 sang Un + 1)
LÆp dÊu b»ng: (U3) (U4) ...
VÝ dô 4 : Cho d·y sè ®îc x¸c ®Þnh bëi:
H·y lËp quy tr×nh tÝnh un.
Gi¶i:
- Thùc hiÖn quy tr×nh:
2 3 4 1 5
3 4 5
3 4 5
... ...
ta ®îc d·y: 15, 58, 239, 954, 3823, 15290, 61167, 244666, 978671...
HoÆc cã thÓ thùc hiÖn quy tr×nh:
1 2
3 4 5
... ...
ta còng ®îc kÕt qu¶nhtrªn.
4) D·y sè cho bëi hÖ thøc truy håi víi hÖ sè biÕn thiªn d¹ng:
|
|
|
* ThuËt to¸n ®Ó lËp quy tr×nh tÝnh sè h¹ng cña d·y:
- Sö dông 3 « nhí: : chøa gi¸ trÞ cña n
: chøa gi¸ trÞ cña un
: chøa gi¸ trÞ cña un+1
- LËp c«ng thøc tÝnh un+1 thùc hiÖn g¸n : = + 1 vµ := ®Ó tÝnh sè h¹ng tiÕp theo cña d·y
- LÆp phÝm :
VÝ dô 5 : Cho d·y sè ®îc x¸c ®Þnh bëi:
H·y lËp quy tr×nh tÝnh un.
Gi¶i:
- Thùc hiÖn quy tr×nh:
1 0
1
1
1
... ...
ta ®îc d·y:
II/ LËp c«ng thøc sè h¹ng tæng qu¸t:
Ph¬ng ph¸p gi¶i:
- LËp quy tr×nh trªn MTBT ®Ó tÝnh mét sè sè h¹ng cña d·y sè
- T×m quy luËt cho d·y sè, dù ®o¸n c«ng thøc sè h¹ng tæng qu¸t
- Chøng minh c«ng thøc t×m ®îc b»ng quy n¹p
|
|
VÝ dô 1: T×m a2004 biÕt:
Gi¶i:
- Tríc hÕt ta tÝnh mét sè sè h¹ng ®Çu cña d·y (an), quy tr×nh sau:
1 0
1
2 3
1
1
- Ta ®îc d·y:
- Tõ ®ã ph©n tÝch c¸c sè h¹ng ®Ó t×m quy luËt cho d·y trªn:
|
|
a1 = 0
a2 = Þ dù ®o¸n c«ng thøc sè h¹ng tæng qu¸t:
|
|
|
a3 =
|
a4 = * DÔ dµng chøng minh c«ng thøc (1) ®óng
...
Þ
|
|
VÝ dô 2: XÐt d·y sè:
Chøng minh r»ng sè A = 4an.an+2 + 1 lµ sè chÝnh ph¬ng.
Gi¶i:
- TÝnh mét sè sè h¹ng ®Çu cña d·y (an) b»ng quy tr×nh:
3 2 1 1
2 1
2 1
+
... ...
- Ta ®îc d·y: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55,...
- T×m quy luËt cho d·y sè:
|
|
Þ dù ®o¸n c«ng thøc sè h¹ng tæng qu¸t:
|
|
|
|
* Ta hoµn toµn chøng minh c«ng thøc (1)
...
Tõ ®ã: A = 4an.an+2 + 1 = n(n + 1)(n + 2)(n + 3) +1 = (n2 + 3n + 1)2.
Þ A lµ mét sè chÝnh ph¬ng.
C¸ch gi¶i kh¸c: Tõ kÕt qu¶ t×m ®îc mét sè sè h¹ng ®Çu cña d·y,ta thÊy:
- Víi n = 1 th× A = 4a1.a3 + 1 = 4.1.6 + 1 = 25 = (2a2 - 1)2
- Víi n = 2 th× A = 4a2.a4 + 1 = 4.3.10 + 1 = 121 = (2a3 - 1)2
- Víi n = 3 th× A = 4a3.a5 + 1 = 4.6.15 + 1 = 361 = (2a4 - 1)2
Tõ ®ã ta chøng minh A = 4an.an+2 + 1 = (2an+1 - 1)2 (*)
B»ng ph¬ng ph¸p quy n¹p ta còng dÔ dµng chøng minh ®îc (*).
III/ Mét sè d¹ng bµi tËp sö dông trong thi gi¶i To¸n b»ng MTBT:
Bµi 1: Cho d·y sè (n = 0, 1, 2,...):
a) Chøng minh un nguyªn víi mäi n tù nhiªn.
b) T×m tÊt c¶ n nguyªn ®Ó un chia hÕt cho 3.
Bµi 2: Cho d·y sè (an) ®îc x¸c ®Þnh bëi:
a) X¸c ®Þnh c«ng thøc sè h¹ng tæng qu¸t an.
b) Chøng minh r»ng sè: biÓu diÔn ®îc díi d¹ng tæng b×nh ph¬ng cña 3 sè nguyªn liªn tiÕp víi mäi n ³ 1.
Bµi 3: Cho d·y sè (un) x¸c ®Þnh bëi:
T×m tÊt c¶ sè tù nhiªn n sao cho un lµ sè nguyªn tè.
Bµi 4: Cho d·y sè (an) x¸c ®Þnh bëi:
Chøng minh r»ng:
a) D·y sè trªn cã v« sè sè d¬ng, sè ©m.
b) a2002 chia hÕt cho 11.
Bµi 5: Cho d·y sè (an) x¸c ®Þnh bëi:
Chøng minh an nguyªn víi mäi n tù nhiªn.
Bµi 6: D·y sè (an) ®îc x¸c ®Þnh theo c«ng thøc:
; (kÝ hiÖu lµ phÇn nguyªn cña sè).
Chøng minh r»ng d·y (an) lµ d·y c¸c sè nguyªn lÎ.
Bài 7: Cho dãy số a1 = 3; an + 1 = .
a) Lập quy trình bấm phím tính an + 1
b) Tính an với n = 2, 3, 4, ..., 10
Bài 8: Cho dãy số x1 = ; .
a) Hãy lập quy trình bấm phím tính xn + 1
b) Tính x30 ; x31 ; x32
Bài 9: Cho dãy số (n ³ 1)
a) Lập quy trình bấm phím tính xn + 1 với x1 = 1 và tính x100.
b) Lập quy trình bấm phím tính xn + 1 với x1 = -2 và tính x100.
Bài 10: Cho dãy số (n ³ 1)
a) Cho x1 = 0,25. Viết quy trình ấn phím liên tục để tính các giá trị của xn + 1
b) Tính x100
Bài 11: Cho dãy số với n = 0; 1; 2; 3; ...
a) Tính 5 số hạng đầu tiên U0, U1, U2, U3, U4
b) Chứng minh rằng Un + 2 = 10Un + 1 – 18Un .
c) Lập quy trình bấm phím liên tục tính Un + 2 theo Un + 1 và Un.
Hướng dẫn giải:
a) Thay n = 0 ; 1 ; 2 ; 3 ; 4 vào công thức ta được
U0 = 0, U1 = 1, U2 = 10, U3 = 82, U4 = 640
b) Chứng minh: Giả sử Un + 2 = aUn + 1 + bUn + c. Thay n = 0; 1; 2 và
công thức ta được hệ phương trình:
Giải hệ này ta được a = 10, b = -18, c = 0
c) Quy trình bấm phím liên tục tính Un + 2 trên máy Casio 570MS.
Đưa U1 vào A, tính U2 rồi đưa U2 vào B
lặp lại dãy phím sau để tính liên tiếp Un + 2 với n = 2, 3, ...
Bài 12: Cho dãy số với n = 1; 2; 3; ...
a) Tính 5 số hạng đầu tiên U1, U2, U3, U4 , U5
b) Lập công thức truy hồi tính Un + 1 theo Un và Un – 1.
c) Lập quy trình bấm phím liên tục tính Un + 1 trên máy Casio
Bài 13: Cho dãy số với số hạng tổng quát được cho bởi công thức
với n = 1 , 2 , 3 , . . . k , . . .
a) Tính
b) Lập công thức truy hồi tính theo và
c) Lập quy trình ấn phím liên tục tính theo và
Bài 14: Cho dãy số được tạo thành theo quy tắc sau: Mỗi số sau bằng
tích của hai số trước cộng với 1, bắt đầu từ U0 = U1 = 1.
a) Lập một quy trình tính un.
b) Tính các giá trị của Un với n = 1; 2; 3; ...; 9
c) Có hay không số hạng của dãy chia hết cho 4? Nếu có cho ví dụ. Nếu
không hãy chứng minh.
Hướng dẫn giải:
a) Dãy số có dạng: U0 = U1 = 1, Un + 2 = Un + 1 . Un + 1, (n =1; 2; ...)
Quy trình tính Un trên máy tính Casio 570 MS:
b) Ta có các giá trị của Un với n = 1; 2; 3; ...; 9 trong bảng sau:
U0 = 1 |
U1 = 1 |
U2 = 2 |
U3 = 3 |
U4 = 7 |
U5 = 22 |
U6 = 155 |
U7 = 3411 |
U8 = 528706 |
U9 = 1803416167 |
Bài 15: Cho dãy số U1 = 1, U2 = 2, Un + 1 = 3Un + Un – 1. (n ³ 2)
a) Hãy lập một quy trình tính Un + 1 bằng máy tính Casio
b) Tính các giá trị của Un với n = 18, 19, 20
Bài 16: Cho dãy số U1 = 1, U2 = 1, Un + 1 = Un + Un – 1. (n ³ 2)
a) Hãy lập một quy trình tính Un + 1 bằng máy tính Casio
b) Tính các giá trị của Un với n = 12, 48, 49, 50
ĐS câu b)
U12 = 144, U48 = 4807526976, U49 = 7778742049 , U49 = 125862690
Bài 17: Cho dãy số sắp thứ tự với U1 = 2, U2 = 20 và từ U3 trở đi được tính
theo công thức Un + 1 = 2Un + Un + 1 (n ³ 2).
a) Tính giá trị của U3 , U4 , U5 , U6 , U7 , U8
b) Viết quy trình bấm phím liên tục tính Un
c) Sử dụng quy trình trên tính giá trị của Un với n = 22; 23, 24, 25
C. KÕt luËn:
Trªn ®©y lµ mét sè quy tr×nh tÝnh sè h¹ng cña mét sè d¹ng d·y sè thêng gÆp trong to¸n häc båi dìng häc sinh giái vôùi môc ®Ých lµ ®Ó tham kh¶o cho gi¸o viªn d¹y to¸n, gi¸o viªn d¹y båi dìng häc sinh gi¶i to¸n trªn m¸y tÝnh Casio vµ c¸c em häc sinh cã n¨ng khiÕu vÒ häc to¸n. Qua qu¸ tr×nh triÓn khai th«ng qua thùc tÕ gi¶ng d¹y, víi kinh nghiÖm b¶n th©n, qua ®Ò tµi nµy, t«i hi väng sÏ gióp c¸c em n¾m v÷ng h¬n kiÕn thøc c¬ b¶n cña m«n häc gi¶i to¸n trªn m¸y tÝnh Casio vµ cã ®ñ söï tù tin khi thùc hµnh gi¶i to¸n. Tõ ®ã ph¸t huy ®îc kh¶ n¨ng vËn dông kiÕn thøc linh ho¹t, kh¶ n¨ng s¸ng t¹o còng nh t duy ®éc lËp ®Æc biÖt gióp c¸c em nh÷ng kü n¨ng, t duy thuËt to¸n vµ cã mét hµnh trang tèt chuÈn bÞ cho mét cÊp häc cao h¬n.
Ñứng trước nhu cầu muốn vươn lên học tốt của học sinh và hoà vào không khí đổi mới phương pháp giảng dạy trong đó có bồi dưỡng học sinh giỏi. Tôi xin mạnh dạn giới thiệu một số kinh nghiệm của mình. Bài viết chắc chắn không tránh khỏi thiếu sót. Ñeå ®Ò tµi vieát ñöôïc hoaøn thieän hôn vaø vieäc aùp duïng ñeà taøi vaøo thöïc teá giaûng daïy coù hieäu quaû. Rất mong nhận đựoc sự đóng góp của đồng nghiệp. Xin chân thành cảm ơn.
Hoµn L·o ngµy 20 th¸ng 4 n¨m 2012
ý kiÕn cña trêng: GV thùc hiÖn:
THCS Qu¸ch Xu©n Kú
NguyÔn Xu©n Tëng
Số lượt thích:
0 người
 








Các ý kiến mới nhất